1:N FaceRecognition(Face Search) - Docker
This demo demonstrates 1:N face recognition, face search and face lookup by registering face data and search it from the data enrolled on database like PostgreSQL.
Overview
This project demonstrates an advanced 1:N face recognition technology implemented via a Dockerized Flask API.
This demo performs 1:N face recognition, face search SDK derived from KBY-AI's face recognition server SDK by implementing the functionalities to register face and search face from database(PostgreSQL).
This demo offers APIs to enroll face, to search face, to see database, to clear database. And every API can be customized by updating app.py file accordingly.
SDK
Face Search SDK(1:N Face Recognition) - ServerGithub
Test Online
Postman Endpoints
To test the API, you can use Postman. Here are the endpoints for testing:
http://<your-base-url>/registerThisAPIenrolls face data from image base64 format and save it to database(PostgreSQL)http://<your-base-url>/searchThisAPIseeks face similar to input face among database and returns enrolled image ID and similarity score.http://<your-base-url>/user_listThisAPIshows all data enrolled on database(PostgreSQL).http://<your-base-url>/remove_allThisAPIremoves all data from database.

How to Run
1. System Requirements
CPU: 2 cores or more (Recommended: 8 cores)
RAM: 4 GB or more (Recommended: 8 GB)
HDD: 4 GB or more (Recommended: 8 GB)
OS: Ubuntu 20.04 or later
Dependency: OpenVINO™ Runtime (Version: 2022.3)
2. Setup and Test
Clone the project:
git clone https://github.com/kby-ai/FaceSearch-Docker.gitDownload the model from
Google Drive: click here
cd FaceSearch-Docker
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=19vA7ZOlo19BcW8v4iCoCGahUEbgKCo48' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=19vA7ZOlo19BcW8v4iCoCGahUEbgKCo48" -O data.zip && rm -rf /tmp/cookies.txt
unzip data.zipBuild the
Dockerimage:
sudo docker build --pull --rm -f Dockerfile -t kby-ai-face-search:latest .Get
Machine Code:
sudo docker run -e LICENSE="xxxxx" kby-ai-face-search:latestSend us the
machine codeobtained.

Update the
license.txtfile by overwriting the license key that you received fromKBY-AIteam.Run the
Dockercontainer:
sudo docker run -v ./license.txt:/root/kby-ai-face/license.txt -p 8081:8080 -p 9001:9000 kby-ai-face-search:latest
Last updated