FaceRecognition - Docker
This demo demonstrates face recognition and face liveness detection by mitigating biometric fraud on Linux server in python language.
Overview
This project demonstrates an advanced face recognition technology implemented via a Dockerized Flask API.
It stands for face recognition docker, facial recognition docker, face liveness check docker, spoofing prevention docker, face matching docker, face comparison docker, face search engine docker, face identification docker on Linux server.
SDK
Face Recognition SDK - ServerGithub
dockerhub
Test Online

Postman
To test the API, you can use Postman. Here are the endpoints for testing:
Test with an image file: Send a
POSTrequest to http://18.221.33.238:8081/compare_faceTest with a
base64-encodedimage: Send aPOSTrequest to http://18.221.33.238:8081/compare_face_base64You can download the
Postmancollection to easily access and use theseendpoints. click here

How to Run
1. System Requirements
CPU: 2 cores or more (Recommended: 8 cores)
RAM: 4 GB or more (Recommended: 8 GB)
HDD: 4 GB or more (Recommended: 8 GB)
OS: Ubuntu 20.04 or later
Dependency: OpenVINO™ Runtime (Version: 2022.3)
2. Setup and Test
Clone the project:
git clone https://github.com/kby-ai/FaceRecognition-Docker.gitDownload the model from
Google Driveand unzip it: click here
cd FaceRecognition-Docker
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=19vA7ZOlo19BcW8v4iCoCGahUEbgKCo48' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=19vA7ZOlo19BcW8v4iCoCGahUEbgKCo48" -O data.zip && rm -rf /tmp/cookies.txt
unzip data.zipBuild the
Dockerimage:
sudo docker build --pull --rm -f Dockerfile -t kby-ai-face:latest .Run the
Dockercontainer:
sudo docker run -v ./license.txt:/home/openvino/kby-ai-face/license.txt -p 8081:8080 kby-ai-faceSend us the
machine codeand replace thelicense.txtfile you received. Then, run theDockercontainer again.


To test the
API, you can usePostman. Here are theendpointsfor testing: Test with an image file: Send aPOSTrequest to http://{xx.xx.xx.xx}:8081/compare_face Test with abase64-encodedimage: Send aPOSTrequest to http://{xx.xx.xx.xx}:8081/compare_face_base64 You can download thePostmancollection to easily access and use theseendpoints. click here
3. Execute the Gradio demo
Setup
Gradio
Ensure that you have the necessary dependencies installed.
Gradio requires Python 3.6 or above.
You can install Gradio using pip by running the following command:
pip install gradioRun the demo by using the following command:
cd gradio
python demo.pyYou can test within the following
URL: http://127.0.0.1:9000
Last updated