Help Center
  • Welcome to KBY-AI
  • Product
    • Face Liveness Detection SDK, Face Recognition SDK
      • Basic SDK - Mobile
        • Basic SDK - Android
        • Basic SDK - iOS
      • Standard SDK - Mobile
        • Standard SDK - Android
        • Standard SDK - iOS
      • Premium SDK - Mobile
        • Premium SDK - Android
        • Premium SDK - iOS
      • Face Liveness Detection SDK - Server
      • Face Recognition SDK - Server
    • ID Card Recognition SDK
      • ID Card Recognition SDK - Android
      • ID Card Recognition SDK - iOS
      • ID Card Recognition SDK - Server
      • Supported Documents
      • Result Parsing
    • ID Document Liveness Detection SDK
    • ID Document Auto Capture Web
    • Palm Recognition SDK
      • Palmprint Recognition SDK - Server
      • Palmvein Recognition SDK - Server
    • Automatic License Plate/Number Recognition SDK
      • License Plate Recognition-Server
      • License Plate Recognition-Flutter
      • License Plate Recognition-Android
    • Computer Vision Solutions
      • Fire/Smoke Detection-Server
  • Demo Projects
    • Mobile (Android, iOS)
      • FaceLivenessDetection - Android
      • FaceLivenessDetection - iOS
      • FaceRecognition - Android
      • FaceRecognition - iOS
      • FaceRecognition - Flutter
      • FaceRecognition - Ionic-Cordova
      • FaceRecognition - React-Native
      • FaceAttribute - Android
      • FaceAttribute - iOS
      • FaceAttribute - Flutter
      • IDCardRecognition - Android
      • IDCardRecognition - iOS
      • License Plate Recognition-Flutter
      • License Plate Recognition-Android
    • Server (Windows, Linux)
      • FaceLivenessDetection - Windows
      • FaceLivenessDetection - Docker
      • FaceLivenessDetection - C# - .NET
      • FaceRecognition - Windows
      • FaceRecognition - Docker
      • FaceRecognition - C# - .NET
      • IDCardRecognition - Windows
      • IDCardRecognition - Docker
      • IDCardRecognition - C# - .NET
      • Palm Print Recognition SDK - Docker
      • Palm Vein Recognition SDK - Docker
      • License Plate Recognition-Docker
      • License Plate Recognition - C# - .NET
  • FAQ
    • How can I set up a Kubernetes system?
    • Has KBY-AI's facial algorithm been certified by a reliable standard measurement authority?
    • Accelerating KBY-AI SDKs with Kubernetes Configuration
Powered by GitBook
On this page
  • Overview
  • SDK
  • Github
  • dockerhub
  • Test Online
  • Postman
  • How to Run
  • 1. System Requirements
  • 2. Setup and Test
  • 3. Execute the Gradio demo
  1. Demo Projects
  2. Server (Windows, Linux)

FaceLivenessDetection - Docker

This demo demonstrates 3D passive face liveness detection python SDK by mitigating biometric fraud on Linux server.

PreviousFaceLivenessDetection - WindowsNextFaceLivenessDetection - C# - .NET

Last updated 7 months ago

Overview

This project demonstrates an advanced face liveness detection technology implemented via a Dockerized Flask API.

It stands for 3D passive face liveness detection docker, face anti-spoofing docker, face fraudulent check docker, face liveness check docker, fraud prevention docker, spoof prevention docker, face fraud detection docker and biometric fraud with liveness detection on Linux server.

SDK

Github

dockerhub

Test Online

Postman

To test the API, you can use Postman. Here are the endpoints for testing:

How to Run

1. System Requirements

CPU: 2 cores or more (Recommended: 8 cores)

RAM: 4 GB or more (Recommended: 8 GB)

HDD: 4 GB or more (Recommended: 8 GB)

OS: Ubuntu 20.04 or later

Dependency: OpenVINOâ„¢ Runtime (Version: 2022.3)

2. Setup and Test

  • Clone the project:

git clone https://github.com/kby-ai/FaceLivenessDetection-Windows.git
cd FaceLivenessDetection-Docker

wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1bYl0p5uHXuTQoETdbRwYLpd3huOqA3wY' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1bYl0p5uHXuTQoETdbRwYLpd3huOqA3wY" -O data.zip && rm -rf /tmp/cookies.txt

unzip data.zip
  • Build the Docker image:

sudo docker build --pull --rm -f Dockerfile -t kby-ai-live:latest .
  • Run the Docker container:

sudo docker run -v ./license.txt:/home/openvino/kby-ai-live/license.txt -p 8080:8080 kby-ai-live
  • Send us the machine code and replace the license.txt file you received. Then, run the Docker container again.

3. Execute the Gradio demo

  • Setup Gradio Ensure that you have the necessary dependencies installed. Gradio requires Python 3.6 or above. You can install Gradio using pip by running the following command:

pip install gradio
  • Run the demo by using the following command:

cd gradio
python demo.py

Test with an image file: Send a POST request to

Test with a base64-encoded image: Send a POST request to

You can download the Postman collection to easily access and use these endpoints.

Download the model from Google Drive and unzip it:

To test the API, you can use Postman. Here are the endpoints for testing: Test with an image file: Send a POST request to . Test with a base64-encoded image: Send a POST request to . You can download the Postman collection to easily access and use these endpoints.

You can test within the following URL:

http://18.221.33.238:8080/check_liveness
http://18.221.33.238:8080/check_liveness_base64
click here
click here
http://{xx.xx.xx.xx}:8080/check_liveness
http://{xx.xx.xx.xx}:8080/check_liveness_base64
click here
http://127.0.0.1:9000
Face Liveness Detection SDK - Server
GitHub - kby-ai/FaceLivenessDetection-Docker: This is the docker project for 3D passive face liveness detection.GitHub
Docker
Logo
Gradio
Logo
Logo